wps_CI¶
wps_CI is a process that runs the ci.netcdf.wrapper function of ClimDown package. To get started, first instatiate the client. Here, the client will try to connect to a remote chickadee instance using the url parameter.¶
In [1]:
import os
from birdy import WPSClient
from wps_tools.testing import get_target_url
from importlib.resources import files
from tempfile import NamedTemporaryFile
from netCDF4 import Dataset
# Ensure we are in the working directory with access to the data
while os.path.basename(os.getcwd()) != "chickadee":
os.chdir('../')
In [2]:
# NBVAL_IGNORE_OUTPUT
url = get_target_url("chickadee")
print(f"Using chickadee on {url}")
Using chickadee on https://marble-dev01.pcic.uvic.ca/twitcher/ows/proxy/chickadee/wps
In [3]:
chickadee = WPSClient(url)
Help for individual processes can be diplayed using the ? command (ex. bird.process?).¶
In [4]:
# NBVAL_IGNORE_OUTPUT
chickadee.ci?
Signature: chickadee.ci( gcm_file, obs_file=None, varname=None, num_cores='4', loglevel='INFO', units_bool=True, n_pr_bool=True, tasmax_units='celsius', tasmin_units='celsius', pr_units='kg m-2 d-1', max_gb=1.0, start_date=datetime.date(1971, 1, 1), end_date=datetime.date(2005, 12, 31), out_file=None, ) Docstring: Climate Imprint (CI) downscaling Parameters ---------- gcm_file : ComplexData:mimetype:`application/x-netcdf`, :mimetype:`application/x-ogc-dods` Filename of GCM simulations obs_file : ComplexData:mimetype:`application/x-netcdf`, :mimetype:`application/x-ogc-dods` Filename of high-res gridded historical observations varname : string Name of the NetCDF variable to downscale (e.g. 'tasmax') out_file : string Filename to create with the climate imprint outputs num_cores : {'1', '2', '3', '4'}positiveInteger The number of cores to use for parallel execution loglevel : {'CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG', 'NOTSET'}string Logging level units_bool : boolean Check the input units and convert them to the target output units n_pr_bool : boolean Check for and eliminate negative precipitation values tasmax_units : string Units used for tasmax in output file tasmin_units : string Units used for tasmin in output file pr_units : string Units used for pr in output file max_gb : float Anapproximately how much RAM to use in the chunk I/O loop. It’s best to set this to about 1/3 to 1/4 of what you want the high-water mark to be start_date : date Defines the stat of the calibration period end_date : date Defines the end of the calibration period Returns ------- output : ComplexData:mimetype:`application/x-netcdf` Output Netcdf File File: ~/code/chickadee/</home/eyvorchuk/code/chickadee/chickadee-venv/lib/python3.8/site-packages/birdy/client/base.py-1> Type: method
We can use the docstring to ensure we provide the appropriate parameters.¶
In [8]:
with NamedTemporaryFile(suffix=".nc", prefix="output_", dir="/tmp", delete=True) as out_file:
output = chickadee.ci(
gcm_file = (files("tests") / "data/tiny_gcm.nc").resolve(),
obs_file = (files("tests") / "data/tiny_obs.nc").resolve(),
out_file = out_file.name,
varname="tasmax",
)
Access the output with nc_to_dataset() or auto_construct_outputs() from wps_tools.output_handling
In [9]:
# NBVAL_IGNORE_OUTPUT
from wps_tools.output_handling import nc_to_dataset, auto_construct_outputs
output_dataset = nc_to_dataset(output.get()[0])
output_dataset
Out[9]:
<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
dimensions(sizes): lon(26), lat(26), time(3651)
variables(dimensions): float64 lon(lon), float64 lat(lat), float64 time(time), float32 tasmax(time, lat, lon)
groups:
In [10]:
# NBVAL_IGNORE_OUTPUT
auto_construct_outputs(output.get())
Out[10]:
[<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
dimensions(sizes): lon(26), lat(26), time(3651)
variables(dimensions): float64 lon(lon), float64 lat(lat), float64 time(time), float32 tasmax(time, lat, lon)
groups: ]
Once the process has completed we can extract the results and ensure it is what we expected.¶
In [11]:
expected_data = Dataset((files("tests") / "data/CI_expected_output.nc").resolve())
for key, value in expected_data.dimensions.items():
assert str(output_dataset.dimensions[key]) == str(value)
In [13]:
output.get()[0]
Out[13]:
'https://marble-dev01.pcic.uvic.ca/wpsoutputs/f0cca536-303f-11f0-a57a-0242ac120006/output_qf7vkijf.nc'
In [ ]: